Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Journal of Biological Chemistry ; 299(3 Supplement):S543-S544, 2023.
Article in English | EMBASE | ID: covidwho-2319296

ABSTRACT

SARS-like coronaviruses, including SARS-CoV and SARS-CoV-2, encode spike proteins that bind human ACE2 protein on the cell surface to enter target cells and cause infection. The efficiency of virus entry depends on ACE2 sequence and expression levels in target cells. A small fraction of humans encodes variants of ACE2, thus altering the biochemical properties at the protein interaction interface. All humans possess cells with vastly differing amounts of ACE2 on the cell surface, ranging from cell types with high expression in the gut and lungs to lower expression in the liver and pancreas. Mastering our understanding of spike-ACE2 interaction and infection requires experiments precisely perturbing both variables. Thus, we developed a synthetic cell engineering approach compatible with high throughput assays for pseudo-typed virus infection. Our assay system is capable of assessing both variables individually and in combination. We adapted an engineered HEK293T DNA recombinase landing pad cell line capable of expressing transgenic ACE2 sequences at highly precise levels. Infection with lentiviruses pseudotyped with the spikes of SARS-like coronaviruses revealed that high ACE2 abundance could mask the effects of impaired binding thereby making it challenging to know the role of affinity altering mutations during infection. We limited the ACE2 abundance on the cell surface by expressing transgenic ACE2 behind a suboptimal Kozak sequence, thereby altering its protein translation rate. This allowed us to understand how ACE2 sequence could impact its interaction with coronavirus spike proteins as two human ACE2 variants at the binding interface, K31D and D355N, exhibited reduced infection. Our experiments suggested that we need to better understand how ACE2 expression determines the susceptibility of cells for SARS-like coronavirus binding and infection. We thus created an ACE2 Kozak library consisting of ~4,096 Kozak variants, each conferring a different ACE2 protein translation rate thus resulting in a range of ACE2 steady-state abundances. Combining fluorescence-activated cell sorting and high-throughput DNA sequencing (FACS-seq) revealed the library to span two orders of magnitude of ACE2 abundance. Challenging this library of cells with spike pseudotyped lentiviruses revealed how ACE2 abundance correlated with infection rate. The library-based experiments yielded a dynamic range wider than traditional single sample infection assay, likely more representative of infection dynamics in vivo. Now that we have characterized the impacts of ACE2 abundance on infectivity in engineered cells, our next goal is to expand the comparison to physiologically relevant cells with endogenously expressed proteins. Modulating protein abundance levels will be key to creating maximally informative functional assays for any protein in cell-based assays, and we have laid the groundwork for being able to simultaneously test the impacts of protein abundance and sequence in combination for proteins involved in diverse cellular processes. This research was supported by a National Institute of Health (NIH) grant GM142886 (KAM).Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

2.
Emerg Infect Dis ; 28(12): 2500-2503, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2310054

ABSTRACT

Surveillance of bat betacoronaviruses is crucial for understanding their spillover potential. We isolated bat sarbecoviruses from Rhinolophus cornutus bats in multiple locations in Japan. These viruses grew efficiently in cells expressing R. cornutus angiotensin converting enzyme-2, but not in cells expressing human angiotensin converting enzyme-2, suggesting a narrow host range.


Subject(s)
Chiroptera , Animals , Humans , Peptidyl-Dipeptidase A , Japan/epidemiology , Betacoronavirus , Host Specificity
3.
mBio ; : e0256622, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2137435

ABSTRACT

Hundreds of sarbecoviruses have been found in bats, but only a fraction of them have the ability to infect cells using angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV and -2. To date, only ACE2-dependent sarbecoviruses have been isolated from field samples or grown in the laboratory. ACE2-independent sarbecoviruses, comprising the majority of the subgenus, have not been propagated in any type of cell culture, as the factors and conditions needed for their replication are completely unknown. Given the significant zoonotic threat posed by sarbecoviruses, cell culture models and in vitro tools are urgently needed to study the rest of this subgenus. We previously showed that the exogenous protease trypsin could facilitate cell entry of viral-like particles pseudotyped with spike protein from some of the ACE2-independent sarbecoviruses. Here, we tested if these conditions were sufficient to support bona fide viral replication using recombinant bat sarbecoviruses. In the presence of trypsin, some of the spike proteins from clade 2 viruses were capable of supporting bat sarbecovirus infection and replication in human and bat cells. Protease experiments showed a specific viral dependence on high levels of trypsin, as TMPRSS2 and furin had no effect on clade 2 virus entry. These results shed light on how sarbecoviruses transmit and coexist in their natural hosts, provide key insights for future efforts to isolate and grow these viruses from field samples, and further underscore the need for broadly protective, universal coronavirus vaccines. IMPORTANCE Our studies demonstrate that some unexplored sarbecoviruses are capable of replicating in human and bat cells in an ACE2-independent way but need a high trypsin environment. We found that trypsin is not compensated by other known proteases involved in some coronavirus entry. This work provides important information that the trypsin-dependent entry may be a widely employed mechanism for coronaviruses and will help for further understanding the biological features of the less-studied viruses.

4.
Reviews in Medical Virology ; 32(2), 2022.
Article in English | EMBASE | ID: covidwho-1995555

ABSTRACT

Viral disease outbreaks have been always a threat to global public health making affordable, rapid and accurate diagnostics highly important tools to slow down the spread of viruses and decrease the mortality rate. Point-of-care (POC) diagnostics have emerged as a strong tool for the diagnosis of viral infections, especially in countries where health-care systems are inadequate to provide proper services to all citizens. According to the World Health Organization, an ideal POC diagnostic must be Affordable, Sensitive, Specific, User-friendly, Rapid/Robust, Equipment-free and Deliverable (ASSURED). This review surveys carefully each ASSURED criterion and identifies where existing viral POC diagnostics fail to meet these criteria. Given the widespread concern with plastic pollution, we also propose the addition of 'disposability' to the existing ASSURED criteria and consider the letter “D” as the representative of both Deliverable and Disposable. Next, the POC tests used for the diagnosis of several common human viral infections which met all the ASSURED criteria (ASSURED-compliant) are described in detail. Finally, the future of ASSURED-compliant POC diagnostics, capable of generating comparable results to the viral diagnostic gold standards, is discussed.

5.
Virus Evol ; 8(1): veac046, 2022.
Article in English | MEDLINE | ID: covidwho-1978261

ABSTRACT

Over the last several decades, no emerging virus has had a profound impact on the world as the SARS-CoV-2 that emerged at the end of 2019 has done. To know where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated from and how it jumped into human population, we immediately started a surveillance investigation in wild mammals in and around Wuhan when we determined the agent. Herein, coronaviruses were screened in the lung, liver, and intestinal tissue samples from fifteen raccoon dogs, seven Siberian weasels, three hog badgers, and three Reeves's muntjacs collected in Wuhan and 334 bats collected around Wuhan. Consequently, eight alphacoronaviruses were identified in raccoon dogs, while nine betacoronaviruses were found in bats. Notably, the newly discovered alphacoronaviruses shared a high whole-genome sequence similarity (97.9 per cent) with the canine coronavirus (CCoV) strain 2020/7 sampled from domestic dog in the UK. Some betacoronaviruses identified here were closely related to previously known bat SARS-CoV-related viruses sampled from Hubei province and its neighbors, while the remaining betacoronaviruses exhibited a close evolutionary relationship with SARS-CoV-related bat viruses in the RdRp gene tree and clustered together with SARS-CoV-2-related bat coronaviruses in the M, N and S gene trees, but with relatively low similarity. Additionally, these newly discovered betacoronaviruses seem unlikely to bind angiotensin-converting enzyme 2 because of the deletions in the two key regions of their receptor-binding motifs. Finally, we did not find SARS-CoV-2 or its progenitor virus in these animal samples. Due to the high circulation of CCoVs in raccoon dogs in Wuhan, more scientific efforts are warranted to better understand their diversity and evolution in China and the possibility of a potential human agent.

6.
J Virol ; 96(15): e0095822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1949998

ABSTRACT

The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans in vitro similarly to other members of the Coronaviridae family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. IMPORTANCE Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding in vitro. We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.


Subject(s)
Evolution, Molecular , Middle East Respiratory Syndrome Coronavirus , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/metabolism , Polysaccharides/metabolism , Protein Domains , Receptors, Virus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
7.
mBio ; 13(3): e0046322, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807326

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.


Subject(s)
Chiroptera , Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , China/epidemiology , Chiroptera/virology , Coronavirus/classification , Evolution, Molecular , Genome, Viral , Genomics , Humans , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
8.
J Virol ; 96(8): e0016922, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1765080

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , Cross Protection , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chiroptera , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection/immunology , Humans , Mice , Mice, Transgenic , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Viral Zoonoses/prevention & control
9.
Emerg Microbes Infect ; 10(1): 1507-1514, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1310873

ABSTRACT

Severe respiratory disease coronavirus-2 (SARS-CoV-2) has been the most devastating disease COVID-19 in the century. One of the unsolved scientific questions of SARS-CoV-2 is the animal origin of this virus. Bats and pangolins are recognized as the most probable reservoir hosts that harbour highly similar SARS-CoV-2 related viruses (SARSr-CoV-2). This study identified a novel lineage of SARSr-CoVs, including RaTG15 and seven other viruses, from bats at the same location where we found RaTG13 in 2015. Although RaTG15 and the related viruses share 97.2% amino acid sequence identities with SARS-CoV-2 in the conserved ORF1b region, it only shows less than 77.6% nucleotide identity to all known SARSr-CoVs at the genome level, thus forming a distinct lineage in the Sarbecovirus phylogenetic tree. We found that the RaTG15 receptor-binding domain (RBD) can bind to ACE2 from Rhinolophus affinis, Malayan pangolin, and use it as an entry receptor, except for ACE2 from humans. However, it contains a short deletion and has different key residues responsible for ACE2 binding. In addition, we showed that none of the known viruses in bat SARSr-CoV-2 lineage discovered uses human ACE2 as efficiently as the pangolin-derived SARSr-CoV-2 or some viruses in the SARSr-CoV-1 lineage. Therefore, further systematic and longitudinal studies in bats are needed to prevent future spillover events caused by SARSr-CoVs or to understand the origin of SARS-CoV-2 better.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Cell Lineage , Chiroptera/virology , SARS-CoV-2/classification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Animals , Host Specificity , Phylogeny , Severe acute respiratory syndrome-related coronavirus/classification
10.
Anim Dis ; 1(1): 4, 2021.
Article in English | MEDLINE | ID: covidwho-1199940

ABSTRACT

Three major human coronavirus disease outbreaks, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and 2019 coronavirus disease (COVID-19), occurred in the twenty-first century and were caused by different coronaviruses (CoVs). All these viruses are considered to have originated from bats and transmitted to humans through intermediate hosts. SARS-CoV-1 and SARS-CoV-2, disease agent of COVID-19, shared around 80% genomic similarity, and thus belong to SARS-related CoVs. As a natural reservoir of viruses, bats harbor numerous other SARS-related CoVs that could potentially infect humans around the world, causing SARS or COVID-19 like outbreaks in the future. In this review, we summarized the current knowledge of CoVs on geographical distribution, genetic diversity, cross-species transmission potential and possible pathogenesis in humans, aiming for a better understanding of bat SARS-related CoVs in the context of prevention and control.

11.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: covidwho-1024213

ABSTRACT

The Chinese horseshoe bat (Rhinolophus sinicus), reservoir host of severe acute respiratory syndrome coronavirus (SARS-CoV), carries many bat SARS-related CoVs (SARSr-CoVs) with high genetic diversity, particularly in the spike gene. Despite these variations, some bat SARSr-CoVs can utilize the orthologs of the human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), for entry. It is speculated that the interaction between bat ACE2 and SARSr-CoV spike proteins drives diversity. Here, we identified a series of R. sinicus ACE2 variants with some polymorphic sites involved in the interaction with the SARS-CoV spike protein. Pseudoviruses or SARSr-CoVs carrying different spike proteins showed different infection efficiencies in cells transiently expressing bat ACE2 variants. Consistent results were observed by binding affinity assays between SARS-CoV and SARSr-CoV spike proteins and receptor molecules from bats and humans. All tested bat SARSr-CoV spike proteins had a higher binding affinity to human ACE2 than to bat ACE2, although they showed a 10-fold lower binding affinity to human ACE2 compared with that of their SARS-CoV counterpart. Structure modeling revealed that the difference in binding affinity between spike and ACE2 might be caused by the alteration of some key residues in the interface of these two molecules. Molecular evolution analysis indicates that some key residues were under positive selection. These results suggest that the SARSr-CoV spike protein and R. sinicus ACE2 may have coevolved over time and experienced selection pressure from each other, triggering the evolutionary arms race dynamics.IMPORTANCE Evolutionary arms race dynamics shape the diversity of viruses and their receptors. Identification of key residues which are involved in interspecies transmission is important to predict potential pathogen spillover from wildlife to humans. Previously, we have identified genetically diverse SARSr-CoVs in Chinese horseshoe bats. Here, we show the highly polymorphic ACE2 in Chinese horseshoe bat populations. These ACE2 variants support SARS-CoV and SARSr-CoV infection but with different binding affinities to different spike proteins. The higher binding affinity of SARSr-CoV spike to human ACE2 suggests that these viruses have the capacity for spillover to humans. The positive selection of residues at the interface between ACE2 and SARSr-CoV spike protein suggests long-term and ongoing coevolutionary dynamics between them. Continued surveillance of this group of viruses in bats is necessary for the prevention of the next SARS-like disease.


Subject(s)
Biological Coevolution , Chiroptera/virology , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Animals , Binding Sites , Chiroptera/classification , Chiroptera/genetics , Coronavirus Infections/virology , Evolution, Molecular , Genetic Variation , HeLa Cells , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , Selection, Genetic , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
12.
Emerg Infect Dis ; 26(12): 3074-3076, 2020 12.
Article in English | MEDLINE | ID: covidwho-940168

ABSTRACT

We challenged chickens, turkeys, ducks, quail, and geese with severe acute respiratory syndrome coronavirus 2 or Middle East respiratory syndrome coronavirus. We observed no disease and detected no virus replication and no serum antibodies. We concluded that poultry are unlikely to serve a role in maintenance of either virus.


Subject(s)
Anseriformes , Coronavirus Infections/veterinary , Galliformes , Middle East Respiratory Syndrome Coronavirus , Poultry Diseases/virology , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/veterinary , COVID-19/virology , Coronavirus Infections/virology , Disease Susceptibility/veterinary , Disease Susceptibility/virology , Ducks , Geese , Virus Replication
14.
Emerg Infect Dis ; 26(10): 2469-2472, 2020 10.
Article in English | MEDLINE | ID: covidwho-742705

ABSTRACT

To validate the specimen-pooling strategy for real-time reverse transcription PCR detection of severe acute respiratory syndrome coronavirus 2, we generated different pools including positive specimens, reflecting the distribution of cycle threshold values at initial diagnosis. Cumulative sensitivities of tested pool sizes suggest pooling of <6 specimens for surveillance by this method.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Mass Screening/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Nasopharynx/virology , Oropharynx/virology , Pandemics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
15.
Emerg Infect Dis ; 26(12): 2961-2965, 2020 12.
Article in English | MEDLINE | ID: covidwho-690716

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 did not replicate efficiently in 13 bat cell lines, whereas severe acute respiratory syndrome coronavirus replicated efficiently in kidney cells of its ancestral host, the Rhinolophus sinicus bat, suggesting different evolutionary origins. Structural modeling showed that RBD/RsACE2 binding may contribute to the differential cellular tropism.


Subject(s)
SARS-CoV-2/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Tropism/genetics , Animals , COVID-19 , Chiroptera/virology , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL